Preparation and Crystal Structure of a New Sulphur Nitride, S₅N₆; a Molecular Basket

By TRISTRAM CHIVERS* and JOHN PROCTOR

(Department of Chemistry, The University of Calgary, Calgary T2N 1N4, Alberta, Canada)

Summary An X-ray crystallographic study has shown that S_5N_6 , prepared from $Bu_4N^+S_4N_5^-$ and bromine in methylene chloride, has a structure in which an -N=S=N- unit bridges two sulphur atoms of an S_4N_4 cradle.

The preparation and structural characterization of anionic, $S_4N_5^{-,1}$ and cationic, $S_4N_5^{+,2}$ cages closely related to S_4N_4 have recently been described. During an investigation of the reactions of these ions, we have observed the unexpected formation of pentasulphur hexanitride, S_5N_6 , on several occasions. Here we report the details of an easy synthesis and the crystal structure of this novel sulphur nitride.

A solution of bromine (0.40 mmol) in dry methylene chloride (30 ml) was added (20 min) to a solution of ${\rm Bu_4N^+S_4N_5^-}$ (0.65 mmol) in methylene chloride (20 ml) at 0 °C. After 5.5 h, the orange solution was filtered and slow removal of the solvent from the filtrate below 0 °C led to the precipitation of S_5N_6 in 73% yield [after washing with cold methylene chloride (5 ml)]. The orange crystals of $\mathrm{S}_5\mathrm{N}_6$ are stable for long periods at 20 °C under an inert atmosphere, but turn black immediately on exposure to air. S₅N₆ sublimes without significant decomposition at 45 °C and 10⁻² mmHg and decomposes at 130 °C during a m.p. determination. The u.v.-visible spectrum (in CH₂Cl₂) showed two smooth bands with $\lambda_{
m max}$ 375 (ϵ ca. 5 imes 10³) and 250 nm (ϵ ca. 6 \times 10⁴ l mol⁻¹ cm⁻¹). The i.r. spectrum (Nujol)[†] of S₅N₆ showed bands at 1088sh, 1066s, 1030s, 968w, 938s, 852s, 835w, 694m, 648s, 621w, 573s, 554m, 500s, 463w, 433m, 418w, and 388s cm⁻¹. Crystals suitable for an X-ray structural determination were obtained by recrystallization from methylene chloride followed by slow evaporation of a solution of S_5N_6 in carbon disulphide.

Crystal data: S_5N_6 , M = 244.36, monoclinic, space group C2/c, a = 8.787(2), b = 11.190(2), c = 7.427(2) Å, U = 700.3(5) Å³, Z = 4, $D_c = 2.317$ g cm⁻³. A total of 781 independent reflections $[I \ge 3\sigma(I)]$ were collected with an Enraf-Nonius CAD 4 diffractometer employing the $\theta - 2\theta$ technique with graphite-monochromated Mo- K_{α} radiation. The structure was solved by direct methods and Fourier techniques and all atoms were refined anisotropically to give an unweighted *R*-factor of 0.033.

FIGURE. X-Ray structure of S_5N_6 . Symmetry related atoms are labelled with primes. Interatomic distances are in Å. E.s.d.'s are shown in parentheses. Principal bond angles are N(1)-S(1)-N(1'), $126\cdot3(2)$; N(2)-S(2)-N(3), $105\cdot7(2)$; N(1)-S(2)-N(2), $109\cdot2(2)$; N(1)-S(2)-N(3), $108\cdot6(2)$; N(2)-S(3)-N(3'), $118\cdot5(2)$; N(2)-S(3)-S(3'), $92\cdot7(1)$; N(3')-S(3)-S(3'), $92\cdot9(1)$; S(1)-N(1)-S(2), $137\cdot1(2)$; S(2)-N(2)-S(3), $121\cdot7(2)$; S(2)-N(3)-S(3'), $120\cdot6(2)^{\circ}$.

The structure of S_5N_6 has twofold symmetry (see Figure) and resembles a basket in which an -N=S=N- unit [S(1)-N(1) = 1.54 Å] is the handle which bridges two sulphur atoms of an S_4N_4 cradle via S-N single bonds [S(2)-N(1) = 1.70 Å].³ The average S-N bond distance in the cradle, 1.61 Å, does not differ significantly from that observed for S_4N_4 (1.62 Å).⁴ but the S-S distances are notably affected by the introduction of a bridge. Thus, the S(2)-S(2') separation is now 3.94 Å, while the S(3)-S(3')distance has shortened to 2.43 Å (cf. 2.58 Å in S_4N_4).⁴

† CAUTION: Minor explosions have occurred during the grinding of samples for i.r. mulls.

The four other S-S separations in the cradle are in the range 2.80-2.82 Å, close to the values found for $S_4N_5^+$ $(2 \cdot 78 - 2 \cdot 81 \text{ Å})$.² The S(1)-S(2) distances are $3 \cdot 01 \text{ Å}$.

Using Banister's approach to bonding in S-N cages,⁵ the 44 electrons of the S_4N_4 cage in S_5N_6 can be accommodated by allocating a lone pair to each atom, a pair of electrons to each S-N bond in the cage, one electron to each of the bonds to the -N=S=N- bridge, and an electron pair of higher energy to each of the five S-S interactions (cf. $S_4N_5^+$).² The incipient formation of fivemembered S_3N_2 rings in S_5N_6 , as a result of the shortening of the S(3)-S(3') separation, is noteworthy in view of the mechanism proposed for the formation of $S_3N_2^+$ in the oxidation of S_4N_4 by AsF_5^3 and the production of various cyclic S₃N₂ derivatives from S₄N₄.⁶

We have also observed the formation of S_5N_6 (in addition to S_4N_4 and $S_3N_2O_2$) in the reaction of Na⁺ $S_4N_5^-$ with thionyl chloride. In contrast, the $S_4N_5^-$ ion reacts smoothly with chlorine in methylene chloride to give S_4N_5Cl in good yield, while the reaction with sulphuryl chloride produces S_5N_6 and S_4N_5Cl , separable by sublimation.

The unexpected discovery of S_5N_6 suggests that other hitherto unpredicted S-N cage species, e.g. $S_5N_7^-$ or $S_4N_6^{2-}$, are possible.⁷ Attempts to prepare such ions are in progress.

We are grateful to Dr. Jan Troup (Molecular Structure Corporation, Texas) for the X-ray structure determination and the National Research Council of Canada for financial support.

(Received, 17th April 1978; Com. 397.)

- ¹ W. Flues, O. J. Scherer, J. Weiss, and G. Wolmershäuser, Angew. Chem. Internat. Edn., 1976, 15, 379.

- ³ T. Chivers and L. Fielding, J.C.S. Chem. Comm., 1978, 391.
 ³ R. J. Gillespie, P. R. Ireland, and J. E. Vekris, Canad. J. Chem., 1975, 53, 3147.
 ⁴ B. D. Sharma and J. Donohue, Acta Cryst., 1963, 16, 891.
 ⁵ A. J. Banister, Nature Phys. Sci., 1972, 239, 69.
 ⁶ R. Steudel, F. Rose, R. Reinhardt, and H. Bradaczek, Z. Naturforsch., 1977, 32b, 488 and references cited therein.
- ⁷ J. Bojes and T. Chivers, Inorg. Chem., 1978, 17, 318.